
decoded.avast.io

Binary Data Hiding in VB6 Executables
- Avast Threat Labs

by David Zimmer

10-12 minutes

Overview

This is part one in a series of posts that focus on understanding

Visual Basic 6.0 (VB6) code, and the tactics and techniques

both malware authors and researchers use around it.

Abstract

This document is a running tally covering many of the various ways

VB6 malware can embed binary data within an executable.

There are 4 main categories:

string based encodings

data hidden within the actual opcodes of the program

data hidden within parts of the VB6 file format

data in or around normal PE structures

Originally I was only going to cover data hidden within the file

format itself but for the sake of documentation I decided it is worth

covering them all.

Binary Data Hiding in VB6 Executables - Avast Threat Labs about:reader?url=https://decoded.avast.io/davidzimmer/binary-data-hidin...

1 of 11 5/5/2021, 12:38 PM

Data held within the file format is a special case which I find the

most interesting. This is because it can be interspersed within a

complex set of undocumented structures which would require

advanced knowledge and intricate parsing to detect. In this

scenario it would be hard to determine where the data is coming

from or to even recognize that these buffers exist.

Resource Data

The first technique is the standard built into the language itself,

namely loading data from the resource section. VB6 comes with an

add-in that allows users to add a .RES file to the project. This file

gets compiled into the resource section of the executable and

allows for binary data to be easily loaded.

This is a well known and standard technique.

Appended Data

This technique is very old and has been used from all manner of

programming language. It will be mentioned again for

thoroughness and to link to a public implementation [1] that allows

for simplified use.

Binary Data Hiding in VB6 Executables - Avast Threat Labs about:reader?url=https://decoded.avast.io/davidzimmer/binary-data-hidin...

2 of 11 5/5/2021, 12:38 PM

Hex String Buffers

It is very common for malware to build up a string of hex characters

that are later converted back to binary data. Conversion commonly

includes various text manipulations such as decryption or stripping

junk character sequences. Extra character sequences are

commonly used to prevent automatic recognition of the data as a

hex string by AV.

In the context of VB6, there are several limitations. The IDE only

allows for a total of 1023 characters to be on a single line. VB’s

line continuation syntax of &_ is also limited to only 25 lines. For

these reasons you will often see large blocks of data embedded in

the following format:

In a compiled binary each string fragment is held as an individual

chunk which is easily identifiable. A faster variant may hold each

element in a string array so conglomeration only occurs once.

This is a well known and standard technique. It is commonly found

in VBA, VB6 and malware written in many other languages. Line

length limitations can not be bypassed through command line

compilation.

Binary Data Within Images

There are multiple ways to embed lossless data into image formats.

The most common will be to embed the data directly within the

structure of a BITMAP image. Bitmaps can be held directly within

Binary Data Hiding in VB6 Executables - Avast Threat Labs about:reader?url=https://decoded.avast.io/davidzimmer/binary-data-hidin...

3 of 11 5/5/2021, 12:38 PM

VB6 Image and Picture controls. Data embedded in this manner will

be held in the .FRX form resource file before compilation. Once

compiled it will be held in a binary property field for the target form

element. Images created like this can be generated with a special

tool, and then embedded directly into the form using the IDE.

The following is a public sample[2] of data being extracted from

such a bitmap

Extracted images will display as a series of colored blocks and

pixels of various colors. Note that this is not stenography.

Many tools understand how to extract embedded images from

binary files. Since the image data still contains the BITMAP header,

parsing of the VB6 file format itself is not necessary. This technique

is public and in common use. The data is often decrypted after it is

extracted.

Chr Strings

Similar to obfuscations found in C malware, strings can be built up

at runtime based on individual byte values. A common example

Binary Data Hiding in VB6 Executables - Avast Threat Labs about:reader?url=https://decoded.avast.io/davidzimmer/binary-data-hidin...

4 of 11 5/5/2021, 12:38 PM

may look like the following:

At the asm level, this serves to break up each byte value and puts it

inline with a bunch of opcodes preventing automatic detection or

display with strings. For native VB6 code it will look like the

following:

In P-Code it will look like the following:

This is a well known and standard technique. It is commonly found

in VBA as well as VB6 malware.

Numeric Arrays

Numeric arrays are a fairly standard technique in malware that are

used to break up the binary data amongst the programs opcodes.

This is similar to the Chr technique but can hold data in a more

compact format. The most common data types used for this

technique are 4 byte longs, and 8 byte currency types.

Binary Data Hiding in VB6 Executables - Avast Threat Labs about:reader?url=https://decoded.avast.io/davidzimmer/binary-data-hidin...

5 of 11 5/5/2021, 12:38 PM

The main advantage of this technique is that the data can be easily

manipulated with math to decrypt it on the fly.

Native:

P-Code:

Native:

P-Code:

Binary Data Hiding in VB6 Executables - Avast Threat Labs about:reader?url=https://decoded.avast.io/davidzimmer/binary-data-hidin...

6 of 11 5/5/2021, 12:38 PM

This technique is not as popular as the others, but does have a

long history of use. I think the first place I saw it was in Flash

ActionScript exploits.

Form Properties

Forms and embedded GUI elements can contain compiled in data

as part of their properties. The most common attributes used are

Form.Caption, Textbox.Text, and any element’s. Tag

property.

Since all of these properties are typically entered via the IDE, they

are usually found to contain ASCII only data that is later decoded to

binary.

Developers can however embed binary data directly into these

properties using several techniques.

While there is way to hexedit raw data in the .FRX form resource

file, this comes with limitations such as not being able to handle

embedded nulls. Another solution is inserting the data post

compilation. With this technique a large buffer is reserved

consisting of ASCII text that has start and end markers. An

embedding tool can then be run on the compiled executable to fill in

the buffer with true binary data.

Using form element properties to house text based data is a

common practice and has been seen in VBA, VB6, and even PDF

scripts. Binary data embedded with a post processing step has

been observed in the wild. In both P-Code and Native, access to

Binary Data Hiding in VB6 Executables - Avast Threat Labs about:reader?url=https://decoded.avast.io/davidzimmer/binary-data-hidin...

7 of 11 5/5/2021, 12:38 PM

these properties will be through COM object VTable calls.

From the Semi-VBDecompiler source, each different control type

(including ActiveX) has its own parser for these compiled in

property fields. Results will vary based on tool used if they can

display the data. Semi-Vbdecompiler has an option to dump

property blobs to disk for manual exploration. This may be required

to reveal this type of embedded binary data.

UserControl Properties

A special case for the above technique occurs with the built in

UserControl type. This control is used for hosting reusable

visual elements and in OCX creation. The control has two events

which are passed a PropertyBag object of its internal binary

settings. This binary data can be easily set in the IDE through

property pages. This mechanism can be used to store any kind of

binary data including entire file systems. A public example of this

technique is available[3]. Embedded data will be held per instance

of the UserControl in its properties on the host form.

Binary Strings

Compiled VB6 executables store internal strings with a length

Binary Data Hiding in VB6 Executables - Avast Threat Labs about:reader?url=https://decoded.avast.io/davidzimmer/binary-data-hidin...

8 of 11 5/5/2021, 12:38 PM

prefix. Similar to the form properties trick, these entries can be

modified post compilation to contain arbitrary binary data. In order

to discern these data blobs from other binary data, in depth

understanding and complex parsing of the VB6 file format would

have to occur.

The longest string that can be embedded with this technique is

limited by the line length in the IDE which is 2042 bytes ((1023

bytes – 2 for quotes) *2 for unicode).

VB6 malware can access these strings normally with no special

loading procedure. As far as its concerned the source was simply

str = “binary data”.

The IDE can handle a number of unicode characters which can be

embedded in the source for compilation. Full binary data can be

embedded using a post processing technique.

Error Line Numbers

VB6 allows for developers to embed line numbers that can be

accessed in the event of an error to help determine its location.

This error line number information is stored in a separate table

outside of the byte code stream.

The error line number can be accessed through the Erl()

function. VB6 is limited to 0xFFFF line numbers per function, and

line number values must be in the 0-0xFFFF range. Since the size

of the embedded data is limited with this technique, short strings

such as passwords and web addresses are the most likely use.

When the code below is run, it will output the message “secret”

Binary Data Hiding in VB6 Executables - Avast Threat Labs about:reader?url=https://decoded.avast.io/davidzimmer/binary-data-hidin...

9 of 11 5/5/2021, 12:38 PM

Advanced knowledge of the VB6 file format would be required in

order to discern this data from other parts of the file. Embedded

data is sequential and readable if not encoded in some other way.

Function Bodies

The AddressOf operator allows VB6 easy runtime access to the

address of a public function in a module. It is possible to include a

dummy function that is filled with just placeholder instructions to

create a blank buffer within the .text section of the executable.

This buffer can be easily loaded into a byte array with a

CopyMemory call. A simple post compilation embedding could be

used to fill in the arbitrary data.

For P-Code compiles, AddressOf returns the offset of a loader

stub with a structure offset. P-Code compiles would require several

extra steps but would still be possible.

References

[1] Embedded files appended to executable – theTrik:

https://github.com/thetrik/CEmbeddedFiles

Binary Data Hiding in VB6 Executables - Avast Threat Labs about:reader?url=https://decoded.avast.io/davidzimmer/binary-data-hidin...

10 of 11 5/5/2021, 12:38 PM

[2] Embedding binary data in Bitmap images – theTrik:

http://www.vbforums.com/showthread.php?885395-RESOLVED-

Store-binary-data-in UserControl&p=5466661&

viewfull=1#post5466661

[3] UserControl binary data embedding – theTrik:

https://github.com/thetrik/ctlBinData

Binary Data Hiding in VB6 Executables - Avast Threat Labs about:reader?url=https://decoded.avast.io/davidzimmer/binary-data-hidin...

11 of 11 5/5/2021, 12:38 PM

